⇒ system of linear equations.
\[a_{11}x_1+\dots+a_{1n}x_n=b_1 \\\quad... \\ a_{m1}x_1+\dots+a_{mn}x_n=b_m \]
\[A=\begin{bmatrix}a_{11} & a_{12} & ... & a_{1n} \\a_{21} & a_{22} & ... & a_{2n}\\...&...&...&... \\a_{m1} & a_{m2} & ... & a_{mn}\end{bmatrix}, a_{ij}\in\R \]
\[\displaystyle c_{ij}=\sum^n_{l=1}a_{il}b_{lj},\quad i=1,...,m,\quad j=1,...,k \]
\[AB=C : (n\times k)(k\times m)=(n\times m) \]
BA is not defined if \(m\neq n\)
\(AB \neq BA\)
Matrix multiplication is not defined as an element-wise operation on matrix elements.
Identity matrix: the \(n\times n\)-matrix containing 1 on the diagonal and 0 everywhere else.
\[I_n=\begin{bmatrix}1 & 0 & ... & 0 \\0 & 1 & ... & 0\\...&...&...&... \\ 0 & 0 & ... & 1\end{bmatrix}\in\R^{n\times m} \]
Some properties of matrices:
\[\forall A\in\R^{m\times n}, B\in\R^{n\times p},C\in\R^{p\times q}:\ (AB)C=A(BC)\\ \]
\[\forall A,B\in\R^{m\times n},C,D\in\R^{n\times p}:\ (A+B)C=AC+BC,\\ \qquad \qquad \qquad \qquad A(C+D)=AC+AD \]
\[\forall A\in\R^{m\times n}:\ I_mA=A_n=A \]
< Inverse Matrix >
Consider a square matrix \(A\in\R^{n\times n}\). Let matrix \(B\in\R^{n\times n}\) have the property that \(AB=I_n=BA\). B is called the inverse of A and denoted by \(A^{-1}\).
< Transpose >
For \(A\in\R^{m\times n}\), the matrix \(B\in\R^{n\times m}\) with \(b_{ij}=a_{ij}\) is called the transpose of A. \(B=A^T\)
\[AA^{-1}=I=A^{-1}A\\(AB)^{-1}=B^{=1}A^{-1}\\(A+B)^{-1}\neq A^{-1} + B^{-1}\\(A^T)^T=A\\(A+B)^T=A^T+B^T\\(AB)^T=B^TA^T \]
< Symmetric matrix >
A matrix \(A\in \R^{n\times n}\) is symmetric if \(A=A^T\)
Let \(A\in\R^{m\times n}&λ\in\R.\ Then\ λ A=K,\ K_{ij}=λ a_{ij}\).
\[(λ \psi)C=λ(\psi C),\quad C\in\R^{m\times n} \\ λ(BC)=(λ B)C=B(λ C)=(BC)λ,\quad B\in\R^{m\times n},\ C\in\R^{n\times k}\\(λ C)^T=C^Tλ^T=C^Tλ=λ C^T\]
\[(λ +\psi)C=λ C+\psi C, C\in\R^{m\times n} \\λ(B+C)=λ B+λ C,\ B,C\in\R^{m\times n} \]
The general approach
- Find a particular solution to \(Ax=b\)
- Find all solutions to \(Ax=0\)
- Combine the solutions from steps 1. and 2. to the general solution
- Exchange of two equations (rows in the matrix representing the system of equations)
- Multiplication of an equation (row) with a constant \(λ \in\R{0}\)
- Addition of two equations (rows)
augmented matrix : \([A|b]\)
pivot : the leading coefficient of a row (first nonzero number from the left)
⇒ always strictly to the right of the pivot of the row above → any equation system in row-echelon form always has a “staircase” structure
< row-echelon form >
- All rows that contain only zeros are at the bottom of the matrix; correspondingly, all rows that contain at least one nonzero element are on top of rows that contain only zeros.
- Looking at nonzero rows only, the first nonzero number from the left(pivot or the leading coefficient) is always strictly to the right of the pivot of the row above it.
\[[A|I_n]\rightarrow[I_n|A^{-1}] \]
→ Determining the inverse of a matrix is equivalent to solving systems of linear equations
Assume that a solution exists, and it is able to determine the inverse \(A^{-1}\) → only possible when A is a square matrix and invertible
Otherwise, under mild assumptions ( A needs to have linearly independent columns)...
\[Ax=b \rightarrow A^TAx=A^Tb\rightarrow x=(A^TA)^{-1}A^Tb \]
→ and use the Moore-Penrose pseudo-inverse \((A^T A)^{-1} A^T\) ⇒ minimum norm least-squares solution.
It requires many computations for the matrix-matrix product & computing the inverse of \(A^T A\)
Gaussian elimination plays an important role when computing determinants, checking whether a set of vectors is linearly independent, computing the inverse of a matrix, computing the rank of a matrix, and determining a basis of a vector space.
In practice, systems of many linear equations are solved indirectly, by iterative methods.
Group : Consider a set \(G\) and an operation : \(\otimes: G \times G \rightarrow G\) defined on \(G\). Then \(G:=(G,\otimes )\) is called a group if the following hold:
- Closure of \(G\) under \(\otimes: \forall x, y \in G : x \otimes y \in G\)
- Associativity : \(\forall x,y,z \in G : (x \otimes y) \otimes z = x \otimes (y \otimes z)\)
- Neutral element : \(\exist e \in G,\ \forall x \in G : x \otimes e = x\ and\ e \otimes x = x\)
- Inverse element : \(\forall x \in G,\ \exist y \in G : x\otimes y = e\ and\ y \otimes x = e\) where e is the neural element. We often write \(x^{-1}\) to denote the inverse element of x.